0.0: Introduction to proofs (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    10717
  • This page is a draft and is under active development.

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Introduction to Proofs/Contradiction

    In this section, we will explore different techniques of proving a mathematical statement "If \(p\) then \(q\)". (\(p \to q\)).

    Direct Proof

    In this technique, we shall assume \(p\) and show that \(q\) is true.

    Theorem \(\PageIndex{1}\)

    Let \(n\) be an integer. If \(n\) is even then \(n^2\) is even.

    Proof

    Assume that \(n\) is even. Then \(n=2m\) for some integer \(m \).

    Consider \(n^2=(2m)^2=4m^2=2(2m^2).\) Since \( m \) is an integer, \( (2m^2)\) is an integer.

    Thus \(n^2\) is even.

    Example\(\PageIndex{1}\)

    Show that for all integers \( n\), if \(n\) is odd then \(n^2\) is odd.

    Answer

    Assume that \(n\) is odd. Then \(n=2m+1\) for some integer \(m \).

    Consider \(n^2=(2m+1)^2=4m^2+4m+1=2(2m^2+2m)+1.\)

    Since \( m \) is an integer, \( (2m^2+2m)\) is an integer.

    Thus \(n^2\) is odd.

    Proof by Contrapositive

    In this technique, we shall assume \(\negp\) and show that \( \negq\) is true.

    Theorem \(\PageIndex{2}\)

    Let \(n\) be an integer. If \(n^2\) is even then \(n\) is even.

    Proof

    We shall prove this statement by assuming \(n\) is odd. Then \(n=2m+1\) for some integer \(m \).

    Consider \(n^2=(2m+1)^2=4m^2+4m+1=2(2m^2+2m)+1.\)

    Since \( m \) is an integer, \( (2m^2)+2m\) is an integer.

    Thus \(n^2\) is odd.

    Example\(\PageIndex{2}\)

    Show that for all integers \( n\), if \(n^2\) is odd then \(n\) is odd.

    Answer

    We shall prove this statement by assuming \(n\) is even. Then \(n=2m\) for some integer \(m \).

    Consider \(n^2=(2m)^2=4m^2=2(2m^2).\)

    Since \( m \) is an integer, \( (2m^2)\) is an integer. Thus \(n^2\) is even.

    Proof by Contradiction

    In this technique, we shall assume the negation of the given statement is true, and come to a contradiction.

    Theorem \(\PageIndex{3}\)

    \(\sqrt{2}\) is irrational.

    Proof

    Assume that \(\sqrt{2}\) is rational. Then \(\sqrt{2}= \dfrac {a}{b}\), where \(a \in \mathbb{Z}, b \in \mathbb{Z}\setminus \{0\}\), with no common factors between \(a\) and \(b\). Now, \( \sqrt{2} a=b\). Then \( 2a^2=b^2\). Since \(2\) divides \(2a^2\), \(2\) divides \(b^2\). Thus \(b^2\) is even. Therefore, \(b\) is even, (by theorem 2). Since \( b\) is even, \(2 \) divides \(b\). Therefore, \(2^2 \) divides \(b^2\).

    Since \(2a^2=b^2\), \(2^2 \) divides \(2a^2\). Therefore, \(2 \) divides \(a^2\). Which implies \(a\) is even. This contradicts the fact that \(a\) and \(b\) have no common factors. Thus \(\sqrt{2}\) is irrational.

    Proof by Counterexample

    Example \(\PageIndex{3}\):

    Decide whether the statement is true or false and justify your answer:

    For all integers \(a,b,u,v\), and \(u\ne 0, v \ne 0\), if \(au+bv =0\) then \(a=b=0.\)

    Solution: The statement is false.

    Counterexample: Choose \(a=1,b=-1, u=2,v=2\), then \(au+bv =0\), but \(a\ne 0. b \ne 0, a \ne b.\)

    Mathematical Induction

    Process of Proof by Induction

    Let \(p(n)\) be a mathematical statement, \(n \in \mathbb{N}\) i.e., \(n \ge1\).

    1. Prove the statement is true for the lowest value of \(n\).

    2. Assume that \(p(n)\) is true for all \(n=k\).

    3. Prove \(p(k+1)\) is true.

    Example \(\PageIndex{4}\)

    Prove \(2^n>n+4\) for \(n\ge 3, n\in \mathbb{N}\).

    Answer

    Let \(n=3\). Then \(2^3 >3+4\) is true since clearly \(8>7\). Thus the statement is true for \(n=3\).

    Assume that \(2^n > n+4\) is true for some \(n=k\).

    We will show that \(2^{k+1} > (k+1)+4\).

    Consider \(2^{k+1}=2 \cdot 2^{k} >2 \cdot (k+4)=2k+8\).

    Since \(2k > k+1\) and \(8 >4\), we have \(2k+8>(k+1)+4\).

    Thus the statement is true for all \(n=k\).

    By induction, \(2^n > n+4\) for all \(n\ge 3, n \in \mathbb{Z} \).◻

    Example \(\PageIndex{5}\)

    Show that \(9|(10^{n+1}+3(10^n)+5), \forall n \ge 1\).

    Answer

    Let \(n=1\). Then \(9|(10^2)+3(10)+5\), which is \(9|135\), which is true since \(135=9(15)\) and \(15 \in \mathbb{Z}\).

    Assume that \(9|(10^{n+1}+3(10^n)+5\) is true for some \(n=k\).

    We will show that \(10^{k+1+1}+3(10^{k+1})+5=9m\) for some \(m \in \mathbb{Z}\).

    Consider \(10^{k+1+1}+3(10^{k+1})+5=10(10^{k+1}+3(10^k)+5)-9(5)\)

    \(=10(9m)-9(5)\)

    \(=9(10m-5)\), where \(10m-5 \in \mathbb{Z}\).

    By induction, \(9|(10^{n+1}+3(10^n)+5), \forall n \ge 1\).◻

    Example \(\PageIndex{6}\)

    Show that \(1+2+3+\cdots + n=\frac{n(n+1)}{2}, \; \forall \; n\ge 1\).

    Answer

    Let \(n=1\). Then \(1=\frac{1(1+1)}{2}\) which is true.

    Assume \(1+2+3+\cdots + n=\frac{n(n+1)}{2}\) is true for some \(n=k\).

    We will show that \(1+2+3+\cdots + n +(n+1)=\frac{(n+1)(n+1+1)}{2}\)

    Consider \(1+2+3+\cdots +n+(n+1)=[1+2+3+\cdots+n]+(n+1)\).

    \(=\frac{n(n+1)}{2} +(n+1)\)

    \(=\frac{n(n+1)+2(n+1)}{2}\)

    \(=\frac{(n+1)(n+1+1)}{2}\).

    By induction, \(1+2+3+\cdots + n=\frac{n(n+1)}{2}, \; \forall \; n\ge 1\).◻

    Example \(\PageIndex{7}\)

    Prove that \(3|(10^{n+1}+10^n+1), \; \forall \; n\ge 1\).

    Answer

    Let \(n=1\). Then \(3|(10^2+10+1)\) is true since \(111=3(37)\) and \(37 \in \mathbb{Z}\).

    Assume that \(3|(10^{n+1}+10^n+1)\) for some \(n=k\).

    We will show that \(10^{k+1+1}+10^{k+1}+1=3m, m\in \mathbb{Z}\).

    Consider \(10^{k+1+1}+10^{k+1}+1=10(10^{k+1}+10^k+1)-9(1)\)

    \(=10(3m)-3(3)\)

    \(=3(10m-3)\) where \(10m-3 \in \mathbb{Z}\).

    By induction, \(3|(10^{n+1}+10^n+1), \; \forall \; n\ge 1\).◻

    0.0: Introduction to proofs (2024)

    References

    Top Articles
    50+ of the BEST Healthy Banana Recipes - Simply Quinoa
    Healthy Banana Bread with Applesauce Recipe - My Natural Family
    3 Tick Granite Osrs
    Rosy Boa Snake — Turtle Bay
    Jackerman Mothers Warmth Part 3
    Dricxzyoki
    Nyu Paralegal Program
    Booknet.com Contract Marriage 2
    Craigslist Free Stuff Appleton Wisconsin
    Flights to Miami (MIA)
    Crazybowie_15 tit*
    123 Movies Black Adam
    Power Outage Map Albany Ny
    Morocco Forum Tripadvisor
    What is the difference between a T-bill and a T note?
    Identogo Brunswick Ga
    Rainfall Map Oklahoma
    Maplestar Kemono
    Icommerce Agent
    Amazing deals for Abercrombie & Fitch Co. on Goodshop!
    A Biomass Pyramid Of An Ecosystem Is Shown.Tertiary ConsumersSecondary ConsumersPrimary ConsumersProducersWhich
    Ford F-350 Models Trim Levels and Packages
    F45 Training O'fallon Il Photos
    Cb2 South Coast Plaza
    Kabob-House-Spokane Photos
    Dr Seuss Star Bellied Sneetches Pdf
    Stickley Furniture
    Florence Y'alls Standings
    Elanco Rebates.com 2022
    Poe T4 Aisling
    Donald Trump Assassination Gold Coin JD Vance USA Flag President FIGHT CIA FBI • $11.73
    "Pure Onyx" by xxoom from Patreon | Kemono
    Hattie Bartons Brownie Recipe
    Muma Eric Rice San Mateo
    The Syracuse Journal-Democrat from Syracuse, Nebraska
    Craigslist Summersville West Virginia
    Woodman's Carpentersville Gas Price
    Verizon Outage Cuyahoga Falls Ohio
    Dcilottery Login
    3 Zodiac Signs Whose Wishes Come True After The Pisces Moon On September 16
    Craigslist/Nashville
    Mauston O'reilly's
    John Wick: Kapitel 4 (2023)
    Dagelijkse hooikoortsradar: deze pollen zitten nu in de lucht
    DL381 Delta Air Lines Estado de vuelo Hoy y Historial 2024 | Trip.com
    Bonecrusher Upgrade Rs3
    Theater X Orange Heights Florida
    Understanding & Applying Carroll's Pyramid of Corporate Social Responsibility
    Competitive Comparison
    One Facing Life Maybe Crossword
    Gainswave Review Forum
    Selly Medaline
    Latest Posts
    Article information

    Author: Sen. Emmett Berge

    Last Updated:

    Views: 6300

    Rating: 5 / 5 (80 voted)

    Reviews: 95% of readers found this page helpful

    Author information

    Name: Sen. Emmett Berge

    Birthday: 1993-06-17

    Address: 787 Elvis Divide, Port Brice, OH 24507-6802

    Phone: +9779049645255

    Job: Senior Healthcare Specialist

    Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

    Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.